Metamath Proof Explorer


Theorem opbrop

Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995)

Ref Expression
Hypotheses opbrop.1 z = A w = B v = C u = D φ ψ
opbrop.2 R = x y | x S × S y S × S z w v u x = z w y = v u φ
Assertion opbrop A S B S C S D S A B R C D ψ

Proof

Step Hyp Ref Expression
1 opbrop.1 z = A w = B v = C u = D φ ψ
2 opbrop.2 R = x y | x S × S y S × S z w v u x = z w y = v u φ
3 opelxpi A S B S A B S × S
4 opelxpi C S D S C D S × S
5 3 4 anim12i A S B S C S D S A B S × S C D S × S
6 opex A B V
7 opex C D V
8 eleq1 x = A B x S × S A B S × S
9 8 anbi1d x = A B x S × S y S × S A B S × S y S × S
10 eqeq1 x = A B x = z w A B = z w
11 10 anbi1d x = A B x = z w y = v u A B = z w y = v u
12 11 anbi1d x = A B x = z w y = v u φ A B = z w y = v u φ
13 12 4exbidv x = A B z w v u x = z w y = v u φ z w v u A B = z w y = v u φ
14 9 13 anbi12d x = A B x S × S y S × S z w v u x = z w y = v u φ A B S × S y S × S z w v u A B = z w y = v u φ
15 eleq1 y = C D y S × S C D S × S
16 15 anbi2d y = C D A B S × S y S × S A B S × S C D S × S
17 eqeq1 y = C D y = v u C D = v u
18 17 anbi2d y = C D A B = z w y = v u A B = z w C D = v u
19 18 anbi1d y = C D A B = z w y = v u φ A B = z w C D = v u φ
20 19 4exbidv y = C D z w v u A B = z w y = v u φ z w v u A B = z w C D = v u φ
21 16 20 anbi12d y = C D A B S × S y S × S z w v u A B = z w y = v u φ A B S × S C D S × S z w v u A B = z w C D = v u φ
22 6 7 14 21 2 brab A B R C D A B S × S C D S × S z w v u A B = z w C D = v u φ
23 1 copsex4g A S B S C S D S z w v u A B = z w C D = v u φ ψ
24 23 anbi2d A S B S C S D S A B S × S C D S × S z w v u A B = z w C D = v u φ A B S × S C D S × S ψ
25 22 24 syl5bb A S B S C S D S A B R C D A B S × S C D S × S ψ
26 5 25 mpbirand A S B S C S D S A B R C D ψ