Metamath Proof Explorer


Theorem opco1

Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014) Generalize to closed form. (Revised by BJ, 27-Oct-2024)

Ref Expression
Hypotheses opco1.exa φ A V
opco1.exb φ B W
Assertion opco1 φ A F 1 st B = F A

Proof

Step Hyp Ref Expression
1 opco1.exa φ A V
2 opco1.exb φ B W
3 df-ov A F 1 st B = F 1 st A B
4 3 a1i φ A F 1 st B = F 1 st A B
5 fo1st 1 st : V onto V
6 fof 1 st : V onto V 1 st : V V
7 5 6 mp1i φ 1 st : V V
8 opex A B V
9 8 a1i φ A B V
10 7 9 fvco3d φ F 1 st A B = F 1 st A B
11 op1stg A V B W 1 st A B = A
12 1 2 11 syl2anc φ 1 st A B = A
13 12 fveq2d φ F 1 st A B = F A
14 4 10 13 3eqtrd φ A F 1 st B = F A