Metamath Proof Explorer


Theorem opco1i

Description: Inference form of opco1 . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses opco1i.1 B V
opco1i.2 C V
Assertion opco1i B F 1 st C = F B

Proof

Step Hyp Ref Expression
1 opco1i.1 B V
2 opco1i.2 C V
3 1 a1i B V
4 2 a1i C V
5 3 4 opco1 B F 1 st C = F B
6 5 mptru B F 1 st C = F B