Metamath Proof Explorer


Theorem opco2

Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024)

Ref Expression
Hypotheses opco1.exa φ A V
opco1.exb φ B W
Assertion opco2 φ A F 2 nd B = F B

Proof

Step Hyp Ref Expression
1 opco1.exa φ A V
2 opco1.exb φ B W
3 df-ov A F 2 nd B = F 2 nd A B
4 3 a1i φ A F 2 nd B = F 2 nd A B
5 fo2nd 2 nd : V onto V
6 fof 2 nd : V onto V 2 nd : V V
7 5 6 mp1i φ 2 nd : V V
8 opex A B V
9 8 a1i φ A B V
10 7 9 fvco3d φ F 2 nd A B = F 2 nd A B
11 op2ndg A V B W 2 nd A B = B
12 1 2 11 syl2anc φ 2 nd A B = B
13 12 fveq2d φ F 2 nd A B = F B
14 4 10 13 3eqtrd φ A F 2 nd B = F B