Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
opcon1b
Next ⟩
oplecon3
Metamath Proof Explorer
Ascii
Unicode
Theorem
opcon1b
Description:
Orthocomplement contraposition law. (
negcon1
analog.)
(Contributed by
NM
, 24-Jan-2012)
Ref
Expression
Hypotheses
opoccl.b
⊢
B
=
Base
K
opoccl.o
⊢
⊥
˙
=
oc
⁡
K
Assertion
opcon1b
⊢
K
∈
OP
∧
X
∈
B
∧
Y
∈
B
→
⊥
˙
⁡
X
=
Y
↔
⊥
˙
⁡
Y
=
X
Proof
Step
Hyp
Ref
Expression
1
opoccl.b
⊢
B
=
Base
K
2
opoccl.o
⊢
⊥
˙
=
oc
⁡
K
3
1
2
opcon2b
⊢
K
∈
OP
∧
X
∈
B
∧
Y
∈
B
→
X
=
⊥
˙
⁡
Y
↔
Y
=
⊥
˙
⁡
X
4
eqcom
⊢
⊥
˙
⁡
Y
=
X
↔
X
=
⊥
˙
⁡
Y
5
eqcom
⊢
⊥
˙
⁡
X
=
Y
↔
Y
=
⊥
˙
⁡
X
6
3
4
5
3bitr4g
⊢
K
∈
OP
∧
X
∈
B
∧
Y
∈
B
→
⊥
˙
⁡
Y
=
X
↔
⊥
˙
⁡
X
=
Y
7
6
bicomd
⊢
K
∈
OP
∧
X
∈
B
∧
Y
∈
B
→
⊥
˙
⁡
X
=
Y
↔
⊥
˙
⁡
Y
=
X