Metamath Proof Explorer


Theorem opelco

Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses opelco.1 A V
opelco.2 B V
Assertion opelco A B C D x A D x x C B

Proof

Step Hyp Ref Expression
1 opelco.1 A V
2 opelco.2 B V
3 df-br A C D B A B C D
4 1 2 brco A C D B x A D x x C B
5 3 4 bitr3i A B C D x A D x x C B