Metamath Proof Explorer


Theorem opeldmd

Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm . (Contributed by AV, 11-Mar-2021)

Ref Expression
Hypotheses opeldmd.1 φ A V
opeldmd.2 φ B W
Assertion opeldmd φ A B C A dom C

Proof

Step Hyp Ref Expression
1 opeldmd.1 φ A V
2 opeldmd.2 φ B W
3 opeq2 y = B A y = A B
4 3 eleq1d y = B A y C A B C
5 4 spcegv B W A B C y A y C
6 2 5 syl φ A B C y A y C
7 eldm2g A V A dom C y A y C
8 1 7 syl φ A dom C y A y C
9 6 8 sylibrd φ A B C A dom C