Metamath Proof Explorer


Theorem opelf

Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelf F : A B C D F C A D B

Proof

Step Hyp Ref Expression
1 fssxp F : A B F A × B
2 1 sseld F : A B C D F C D A × B
3 opelxp C D A × B C A D B
4 2 3 syl6ib F : A B C D F C A D B
5 4 imp F : A B C D F C A D B