Metamath Proof Explorer


Theorem opelinxp

Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019)

Ref Expression
Assertion opelinxp C D R A × B C A D B C D R

Proof

Step Hyp Ref Expression
1 brinxp2 C R A × B D C A D B C R D
2 df-br C R A × B D C D R A × B
3 df-br C R D C D R
4 3 anbi2i C A D B C R D C A D B C D R
5 1 2 4 3bitr3i C D R A × B C A D B C D R