Metamath Proof Explorer


Theorem opeliunxp2

Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis opeliunxp2.1 x = C B = E
Assertion opeliunxp2 C D x A x × B C A D E

Proof

Step Hyp Ref Expression
1 opeliunxp2.1 x = C B = E
2 df-br C x A x × B D C D x A x × B
3 relxp Rel x × B
4 3 rgenw x A Rel x × B
5 reliun Rel x A x × B x A Rel x × B
6 4 5 mpbir Rel x A x × B
7 6 brrelex1i C x A x × B D C V
8 2 7 sylbir C D x A x × B C V
9 elex C A C V
10 9 adantr C A D E C V
11 nfiu1 _ x x A x × B
12 11 nfel2 x C D x A x × B
13 nfv x C A D E
14 12 13 nfbi x C D x A x × B C A D E
15 opeq1 x = C x D = C D
16 15 eleq1d x = C x D x A x × B C D x A x × B
17 eleq1 x = C x A C A
18 1 eleq2d x = C D B D E
19 17 18 anbi12d x = C x A D B C A D E
20 16 19 bibi12d x = C x D x A x × B x A D B C D x A x × B C A D E
21 opeliunxp x D x A x × B x A D B
22 14 20 21 vtoclg1f C V C D x A x × B C A D E
23 8 10 22 pm5.21nii C D x A x × B C A D E