Metamath Proof Explorer


Theorem opeliunxp2f

Description: Membership in a union of Cartesian products, using bound-variable hypothesis for E instead of distinct variable conditions as in opeliunxp2 . (Contributed by AV, 25-Oct-2020)

Ref Expression
Hypotheses opeliunxp2f.f _ x E
opeliunxp2f.e x = C B = E
Assertion opeliunxp2f C D x A x × B C A D E

Proof

Step Hyp Ref Expression
1 opeliunxp2f.f _ x E
2 opeliunxp2f.e x = C B = E
3 df-br C x A x × B D C D x A x × B
4 relxp Rel x × B
5 4 rgenw x A Rel x × B
6 reliun Rel x A x × B x A Rel x × B
7 5 6 mpbir Rel x A x × B
8 7 brrelex1i C x A x × B D C V
9 3 8 sylbir C D x A x × B C V
10 elex C A C V
11 10 adantr C A D E C V
12 nfiu1 _ x x A x × B
13 12 nfel2 x C D x A x × B
14 nfv x C A
15 1 nfel2 x D E
16 14 15 nfan x C A D E
17 13 16 nfbi x C D x A x × B C A D E
18 opeq1 x = C x D = C D
19 18 eleq1d x = C x D x A x × B C D x A x × B
20 eleq1 x = C x A C A
21 2 eleq2d x = C D B D E
22 20 21 anbi12d x = C x A D B C A D E
23 19 22 bibi12d x = C x D x A x × B x A D B C D x A x × B C A D E
24 opeliunxp x D x A x × B x A D B
25 17 23 24 vtoclg1f C V C D x A x × B C A D E
26 9 11 25 pm5.21nii C D x A x × B C A D E