Metamath Proof Explorer


Theorem opelopab2

Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopab2.1 x = A φ ψ
opelopab2.2 y = B ψ χ
Assertion opelopab2 A C B D A B x y | x C y D φ χ

Proof

Step Hyp Ref Expression
1 opelopab2.1 x = A φ ψ
2 opelopab2.2 y = B ψ χ
3 1 2 sylan9bb x = A y = B φ χ
4 3 opelopab2a A C B D A B x y | x C y D φ χ