Metamath Proof Explorer


Theorem opelopab2a

Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypothesis opelopabga.1 x = A y = B φ ψ
Assertion opelopab2a A C B D A B x y | x C y D φ ψ

Proof

Step Hyp Ref Expression
1 opelopabga.1 x = A y = B φ ψ
2 eleq1 x = A x C A C
3 eleq1 y = B y D B D
4 2 3 bi2anan9 x = A y = B x C y D A C B D
5 4 1 anbi12d x = A y = B x C y D φ A C B D ψ
6 5 opelopabga A C B D A B x y | x C y D φ A C B D ψ
7 6 bianabs A C B D A B x y | x C y D φ ψ