Metamath Proof Explorer


Theorem opelopabaf

Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopab uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypotheses opelopabaf.x x ψ
opelopabaf.y y ψ
opelopabaf.1 A V
opelopabaf.2 B V
opelopabaf.3 x = A y = B φ ψ
Assertion opelopabaf A B x y | φ ψ

Proof

Step Hyp Ref Expression
1 opelopabaf.x x ψ
2 opelopabaf.y y ψ
3 opelopabaf.1 A V
4 opelopabaf.2 B V
5 opelopabaf.3 x = A y = B φ ψ
6 opelopabsb A B x y | φ [˙A / x]˙ [˙B / y]˙ φ
7 nfv x B V
8 1 2 7 5 sbc2iegf A V B V [˙A / x]˙ [˙B / y]˙ φ ψ
9 3 4 8 mp2an [˙A / x]˙ [˙B / y]˙ φ ψ
10 6 9 bitri A B x y | φ ψ