Metamath Proof Explorer


Theorem opelopabga

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypothesis opelopabga.1 x = A y = B φ ψ
Assertion opelopabga A V B W A B x y | φ ψ

Proof

Step Hyp Ref Expression
1 opelopabga.1 x = A y = B φ ψ
2 elopab A B x y | φ x y A B = x y φ
3 1 copsex2g A V B W x y A B = x y φ ψ
4 2 3 syl5bb A V B W A B x y | φ ψ