Metamath Proof Explorer


Theorem opelopabgf

Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopabg uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018)

Ref Expression
Hypotheses opelopabgf.x xψ
opelopabgf.y yχ
opelopabgf.1 x=Aφψ
opelopabgf.2 y=Bψχ
Assertion opelopabgf AVBWABxy|φχ

Proof

Step Hyp Ref Expression
1 opelopabgf.x xψ
2 opelopabgf.y yχ
3 opelopabgf.1 x=Aφψ
4 opelopabgf.2 y=Bψχ
5 opelopabsb ABxy|φ[˙A/x]˙[˙B/y]˙φ
6 nfcv _xB
7 6 1 nfsbcw x[˙B/y]˙ψ
8 3 sbcbidv x=A[˙B/y]˙φ[˙B/y]˙ψ
9 7 8 sbciegf AV[˙A/x]˙[˙B/y]˙φ[˙B/y]˙ψ
10 2 4 sbciegf BW[˙B/y]˙ψχ
11 9 10 sylan9bb AVBW[˙A/x]˙[˙B/y]˙φχ
12 5 11 bitrid AVBWABxy|φχ