Metamath Proof Explorer


Theorem opelopabt

Description: Closed theorem form of opelopab . (Contributed by NM, 19-Feb-2013)

Ref Expression
Assertion opelopabt xyx=Aφψxyy=BψχAVBWABxy|φχ

Proof

Step Hyp Ref Expression
1 elopab ABxy|φxyAB=xyφ
2 19.26-2 xyx=Aφψy=Bψχxyx=Aφψxyy=Bψχ
3 anim12 x=Aφψy=Bψχx=Ay=Bφψψχ
4 bitr φψψχφχ
5 3 4 syl6 x=Aφψy=Bψχx=Ay=Bφχ
6 5 2alimi xyx=Aφψy=Bψχxyx=Ay=Bφχ
7 2 6 sylbir xyx=Aφψxyy=Bψχxyx=Ay=Bφχ
8 copsex2t xyx=Ay=BφχAVBWxyAB=xyφχ
9 7 8 stoic3 xyx=Aφψxyy=BψχAVBWxyAB=xyφχ
10 1 9 bitrid xyx=Aφψxyy=BψχAVBWABxy|φχ