Metamath Proof Explorer


Theorem opelstrbas

Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses opelstrbas.s φ S Struct X
opelstrbas.v φ V Y
opelstrbas.b φ Base ndx V S
Assertion opelstrbas φ V = Base S

Proof

Step Hyp Ref Expression
1 opelstrbas.s φ S Struct X
2 opelstrbas.v φ V Y
3 opelstrbas.b φ Base ndx V S
4 baseid Base = Slot Base ndx
5 structex S Struct X S V
6 1 5 syl φ S V
7 structfung S Struct X Fun S -1 -1
8 1 7 syl φ Fun S -1 -1
9 4 6 8 3 2 strfv2d φ V = Base S