Metamath Proof Explorer


Theorem opeluu

Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of Enderton p. 41. (Contributed by NM, 31-Mar-1995) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses opeluu.1 A V
opeluu.2 B V
Assertion opeluu A B C A C B C

Proof

Step Hyp Ref Expression
1 opeluu.1 A V
2 opeluu.2 B V
3 1 prid1 A A B
4 1 2 opi2 A B A B
5 elunii A B A B A B C A B C
6 4 5 mpan A B C A B C
7 elunii A A B A B C A C
8 3 6 7 sylancr A B C A C
9 2 prid2 B A B
10 elunii B A B A B C B C
11 9 6 10 sylancr A B C B C
12 8 11 jca A B C A C B C