Metamath Proof Explorer


Theorem opelvvg

Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion opelvvg A V B W A B V × V

Proof

Step Hyp Ref Expression
1 elex A V A V
2 elex B W B V
3 opelxpi A V B V A B V × V
4 1 2 3 syl2an A V B W A B V × V