Metamath Proof Explorer


Theorem opelxpd

Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses opelxpd.1 φ A C
opelxpd.2 φ B D
Assertion opelxpd φ A B C × D

Proof

Step Hyp Ref Expression
1 opelxpd.1 φ A C
2 opelxpd.2 φ B D
3 opelxpi A C B D A B C × D
4 1 2 3 syl2anc φ A B C × D