Metamath Proof Explorer


Theorem opeo

Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion opeo A ¬ 2 A B 2 B ¬ 2 A + B

Proof

Step Hyp Ref Expression
1 odd2np1 A ¬ 2 A a 2 a + 1 = A
2 2z 2
3 divides 2 B 2 B b b 2 = B
4 2 3 mpan B 2 B b b 2 = B
5 1 4 bi2anan9 A B ¬ 2 A 2 B a 2 a + 1 = A b b 2 = B
6 reeanv a b 2 a + 1 = A b 2 = B a 2 a + 1 = A b b 2 = B
7 zaddcl a b a + b
8 zcn a a
9 zcn b b
10 2cn 2
11 adddi 2 a b 2 a + b = 2 a + 2 b
12 10 11 mp3an1 a b 2 a + b = 2 a + 2 b
13 12 oveq1d a b 2 a + b + 1 = 2 a + 2 b + 1
14 mulcl 2 a 2 a
15 10 14 mpan a 2 a
16 mulcl 2 b 2 b
17 10 16 mpan b 2 b
18 ax-1cn 1
19 add32 2 a 2 b 1 2 a + 2 b + 1 = 2 a + 1 + 2 b
20 18 19 mp3an3 2 a 2 b 2 a + 2 b + 1 = 2 a + 1 + 2 b
21 15 17 20 syl2an a b 2 a + 2 b + 1 = 2 a + 1 + 2 b
22 mulcom 2 b 2 b = b 2
23 10 22 mpan b 2 b = b 2
24 23 adantl a b 2 b = b 2
25 24 oveq2d a b 2 a + 1 + 2 b = 2 a + 1 + b 2
26 13 21 25 3eqtrd a b 2 a + b + 1 = 2 a + 1 + b 2
27 8 9 26 syl2an a b 2 a + b + 1 = 2 a + 1 + b 2
28 oveq2 c = a + b 2 c = 2 a + b
29 28 oveq1d c = a + b 2 c + 1 = 2 a + b + 1
30 29 eqeq1d c = a + b 2 c + 1 = 2 a + 1 + b 2 2 a + b + 1 = 2 a + 1 + b 2
31 30 rspcev a + b 2 a + b + 1 = 2 a + 1 + b 2 c 2 c + 1 = 2 a + 1 + b 2
32 7 27 31 syl2anc a b c 2 c + 1 = 2 a + 1 + b 2
33 oveq12 2 a + 1 = A b 2 = B 2 a + 1 + b 2 = A + B
34 33 eqeq2d 2 a + 1 = A b 2 = B 2 c + 1 = 2 a + 1 + b 2 2 c + 1 = A + B
35 34 rexbidv 2 a + 1 = A b 2 = B c 2 c + 1 = 2 a + 1 + b 2 c 2 c + 1 = A + B
36 32 35 syl5ibcom a b 2 a + 1 = A b 2 = B c 2 c + 1 = A + B
37 36 rexlimivv a b 2 a + 1 = A b 2 = B c 2 c + 1 = A + B
38 6 37 sylbir a 2 a + 1 = A b b 2 = B c 2 c + 1 = A + B
39 5 38 syl6bi A B ¬ 2 A 2 B c 2 c + 1 = A + B
40 39 imp A B ¬ 2 A 2 B c 2 c + 1 = A + B
41 40 an4s A ¬ 2 A B 2 B c 2 c + 1 = A + B
42 zaddcl A B A + B
43 42 ad2ant2r A ¬ 2 A B 2 B A + B
44 odd2np1 A + B ¬ 2 A + B c 2 c + 1 = A + B
45 43 44 syl A ¬ 2 A B 2 B ¬ 2 A + B c 2 c + 1 = A + B
46 41 45 mpbird A ¬ 2 A B 2 B ¬ 2 A + B