Metamath Proof Explorer


Theorem opeqex

Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008)

Ref Expression
Assertion opeqex A B = C D A V B V C V D V

Proof

Step Hyp Ref Expression
1 neeq1 A B = C D A B C D
2 opnz A B A V B V
3 opnz C D C V D V
4 1 2 3 3bitr3g A B = C D A V B V C V D V