Metamath Proof Explorer


Theorem opeqpr

Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008) (Avoid depending on this detail.)

Ref Expression
Hypotheses opeqpr.1 A V
opeqpr.2 B V
opeqpr.3 C V
opeqpr.4 D V
Assertion opeqpr A B = C D C = A D = A B C = A B D = A

Proof

Step Hyp Ref Expression
1 opeqpr.1 A V
2 opeqpr.2 B V
3 opeqpr.3 C V
4 opeqpr.4 D V
5 eqcom A B = C D C D = A B
6 1 2 dfop A B = A A B
7 6 eqeq2i C D = A B C D = A A B
8 snex A V
9 prex A B V
10 3 4 8 9 preq12b C D = A A B C = A D = A B C = A B D = A
11 5 7 10 3bitri A B = C D C = A D = A B C = A B D = A