Metamath Proof Explorer


Theorem opfv

Description: Value of a function producing ordered pairs. (Contributed by Thierry Arnoux, 3-Jan-2017)

Ref Expression
Assertion opfv Fun F ran F V × V x dom F F x = 1 st F x 2 nd F x

Proof

Step Hyp Ref Expression
1 simplr Fun F ran F V × V x dom F ran F V × V
2 fvelrn Fun F x dom F F x ran F
3 2 adantlr Fun F ran F V × V x dom F F x ran F
4 1 3 sseldd Fun F ran F V × V x dom F F x V × V
5 1st2ndb F x V × V F x = 1 st F x 2 nd F x
6 4 5 sylib Fun F ran F V × V x dom F F x = 1 st F x 2 nd F x
7 fvco Fun F x dom F 1 st F x = 1 st F x
8 fvco Fun F x dom F 2 nd F x = 2 nd F x
9 7 8 opeq12d Fun F x dom F 1 st F x 2 nd F x = 1 st F x 2 nd F x
10 9 adantlr Fun F ran F V × V x dom F 1 st F x 2 nd F x = 1 st F x 2 nd F x
11 6 10 eqtr4d Fun F ran F V × V x dom F F x = 1 st F x 2 nd F x