Metamath Proof Explorer


Theorem opi2

Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Hypotheses opi1.1 A V
opi1.2 B V
Assertion opi2 A B A B

Proof

Step Hyp Ref Expression
1 opi1.1 A V
2 opi1.2 B V
3 prex A B V
4 3 prid2 A B A A B
5 1 2 dfop A B = A A B
6 4 5 eleqtrri A B A B