Metamath Proof Explorer


Theorem opidon2OLD

Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis opidon2OLD.1 X = ran G
Assertion opidon2OLD G Magma ExId G : X × X onto X

Proof

Step Hyp Ref Expression
1 opidon2OLD.1 X = ran G
2 eqid dom dom G = dom dom G
3 2 opidonOLD G Magma ExId G : dom dom G × dom dom G onto dom dom G
4 forn G : dom dom G × dom dom G onto dom dom G ran G = dom dom G
5 1 4 eqtr2id G : dom dom G × dom dom G onto dom dom G dom dom G = X
6 xpeq12 dom dom G = X dom dom G = X dom dom G × dom dom G = X × X
7 6 anidms dom dom G = X dom dom G × dom dom G = X × X
8 foeq2 dom dom G × dom dom G = X × X G : dom dom G × dom dom G onto dom dom G G : X × X onto dom dom G
9 7 8 syl dom dom G = X G : dom dom G × dom dom G onto dom dom G G : X × X onto dom dom G
10 foeq3 dom dom G = X G : X × X onto dom dom G G : X × X onto X
11 9 10 bitrd dom dom G = X G : dom dom G × dom dom G onto dom dom G G : X × X onto X
12 11 biimpd dom dom G = X G : dom dom G × dom dom G onto dom dom G G : X × X onto X
13 5 12 mpcom G : dom dom G × dom dom G onto dom dom G G : X × X onto X
14 3 13 syl G Magma ExId G : X × X onto X