Metamath Proof Explorer


Theorem opidonOLD

Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis opidonOLD.1 X = dom dom G
Assertion opidonOLD G Magma ExId G : X × X onto X

Proof

Step Hyp Ref Expression
1 opidonOLD.1 X = dom dom G
2 inss1 Magma ExId Magma
3 2 sseli G Magma ExId G Magma
4 1 ismgmOLD G Magma G Magma G : X × X X
5 4 ibi G Magma G : X × X X
6 3 5 syl G Magma ExId G : X × X X
7 inss2 Magma ExId ExId
8 7 sseli G Magma ExId G ExId
9 1 isexid G ExId G ExId u X x X u G x = x x G u = x
10 9 biimpd G ExId G ExId u X x X u G x = x x G u = x
11 8 8 10 sylc G Magma ExId u X x X u G x = x x G u = x
12 simpl u G x = x x G u = x u G x = x
13 12 ralimi x X u G x = x x G u = x x X u G x = x
14 oveq2 x = y u G x = u G y
15 id x = y x = y
16 14 15 eqeq12d x = y u G x = x u G y = y
17 16 rspcv y X x X u G x = x u G y = y
18 eqcom y = u G x u G x = y
19 14 eqeq1d x = y u G x = y u G y = y
20 18 19 syl5bb x = y y = u G x u G y = y
21 20 rspcev y X u G y = y x X y = u G x
22 21 ex y X u G y = y x X y = u G x
23 17 22 syld y X x X u G x = x x X y = u G x
24 13 23 syl5 y X x X u G x = x x G u = x x X y = u G x
25 24 reximdv y X u X x X u G x = x x G u = x u X x X y = u G x
26 25 impcom u X x X u G x = x x G u = x y X u X x X y = u G x
27 26 ralrimiva u X x X u G x = x x G u = x y X u X x X y = u G x
28 11 27 syl G Magma ExId y X u X x X y = u G x
29 foov G : X × X onto X G : X × X X y X u X x X y = u G x
30 6 28 29 sylanbrc G Magma ExId G : X × X onto X