Metamath Proof Explorer


Theorem opiedgfv

Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020)

Ref Expression
Assertion opiedgfv V X E Y iEdg V E = E

Proof

Step Hyp Ref Expression
1 opelvvg V X E Y V E V × V
2 opiedgval V E V × V iEdg V E = 2 nd V E
3 1 2 syl V X E Y iEdg V E = 2 nd V E
4 op2ndg V X E Y 2 nd V E = E
5 3 4 eqtrd V X E Y iEdg V E = E