Metamath Proof Explorer


Theorem opiedgfvi

Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021)

Ref Expression
Hypotheses opvtxfvi.v V V
opvtxfvi.e E V
Assertion opiedgfvi iEdg V E = E

Proof

Step Hyp Ref Expression
1 opvtxfvi.v V V
2 opvtxfvi.e E V
3 opiedgfv V V E V iEdg V E = E
4 1 2 3 mp2an iEdg V E = E