Metamath Proof Explorer


Theorem opifismgm

Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020)

Ref Expression
Hypotheses opifismgm.b B = Base M
opifismgm.p + M = x B , y B if ψ C D
opifismgm.n φ B
opifismgm.c φ x B y B C B
opifismgm.d φ x B y B D B
Assertion opifismgm φ M Mgm

Proof

Step Hyp Ref Expression
1 opifismgm.b B = Base M
2 opifismgm.p + M = x B , y B if ψ C D
3 opifismgm.n φ B
4 opifismgm.c φ x B y B C B
5 opifismgm.d φ x B y B D B
6 4 5 ifcld φ x B y B if ψ C D B
7 6 ralrimivva φ x B y B if ψ C D B
8 7 adantr φ a B b B x B y B if ψ C D B
9 simprl φ a B b B a B
10 simprr φ a B b B b B
11 2 ovmpoelrn x B y B if ψ C D B a B b B a + M b B
12 8 9 10 11 syl3anc φ a B b B a + M b B
13 12 ralrimivva φ a B b B a + M b B
14 n0 B x x B
15 eqid + M = + M
16 1 15 ismgmn0 x B M Mgm a B b B a + M b B
17 16 exlimiv x x B M Mgm a B b B a + M b B
18 14 17 sylbi B M Mgm a B b B a + M b B
19 3 18 syl φ M Mgm a B b B a + M b B
20 13 19 mpbird φ M Mgm