Metamath Proof Explorer


Theorem ople0

Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses op0le.b B = Base K
op0le.l ˙ = K
op0le.z 0 ˙ = 0. K
Assertion ople0 K OP X B X ˙ 0 ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 op0le.b B = Base K
2 op0le.l ˙ = K
3 op0le.z 0 ˙ = 0. K
4 1 2 3 op0le K OP X B 0 ˙ ˙ X
5 4 biantrud K OP X B X ˙ 0 ˙ X ˙ 0 ˙ 0 ˙ ˙ X
6 opposet K OP K Poset
7 6 adantr K OP X B K Poset
8 simpr K OP X B X B
9 1 3 op0cl K OP 0 ˙ B
10 9 adantr K OP X B 0 ˙ B
11 1 2 posasymb K Poset X B 0 ˙ B X ˙ 0 ˙ 0 ˙ ˙ X X = 0 ˙
12 7 8 10 11 syl3anc K OP X B X ˙ 0 ˙ 0 ˙ ˙ X X = 0 ˙
13 5 12 bitrd K OP X B X ˙ 0 ˙ X = 0 ˙