Metamath Proof Explorer


Theorem opncld

Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006)

Ref Expression
Hypothesis iscld.1 X = J
Assertion opncld J Top S J X S Clsd J

Proof

Step Hyp Ref Expression
1 iscld.1 X = J
2 simpr J Top S J S J
3 1 eltopss J Top S J S X
4 1 isopn2 J Top S X S J X S Clsd J
5 3 4 syldan J Top S J S J X S Clsd J
6 2 5 mpbid J Top S J X S Clsd J