Database
BASIC TOPOLOGY
Topology
Closure and interior
opncld
Next ⟩
difopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
opncld
Description:
The complement of an open set is closed.
(Contributed by
NM
, 6-Oct-2006)
Ref
Expression
Hypothesis
iscld.1
⊢
X
=
⋃
J
Assertion
opncld
⊢
J
∈
Top
∧
S
∈
J
→
X
∖
S
∈
Clsd
⁡
J
Proof
Step
Hyp
Ref
Expression
1
iscld.1
⊢
X
=
⋃
J
2
simpr
⊢
J
∈
Top
∧
S
∈
J
→
S
∈
J
3
1
eltopss
⊢
J
∈
Top
∧
S
∈
J
→
S
⊆
X
4
1
isopn2
⊢
J
∈
Top
∧
S
⊆
X
→
S
∈
J
↔
X
∖
S
∈
Clsd
⁡
J
5
3
4
syldan
⊢
J
∈
Top
∧
S
∈
J
→
S
∈
J
↔
X
∖
S
∈
Clsd
⁡
J
6
2
5
mpbid
⊢
J
∈
Top
∧
S
∈
J
→
X
∖
S
∈
Clsd
⁡
J