Metamath Proof Explorer


Theorem opncldf2

Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses opncldf.1 X = J
opncldf.2 F = u J X u
Assertion opncldf2 J Top A J F A = X A

Proof

Step Hyp Ref Expression
1 opncldf.1 X = J
2 opncldf.2 F = u J X u
3 difeq2 u = A X u = X A
4 simpr J Top A J A J
5 1 opncld J Top A J X A Clsd J
6 2 3 4 5 fvmptd3 J Top A J F A = X A