Metamath Proof Explorer


Theorem opncldf3

Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses opncldf.1 X = J
opncldf.2 F = u J X u
Assertion opncldf3 B Clsd J F -1 B = X B

Proof

Step Hyp Ref Expression
1 opncldf.1 X = J
2 opncldf.2 F = u J X u
3 cldrcl B Clsd J J Top
4 1 2 opncldf1 J Top F : J 1-1 onto Clsd J F -1 = x Clsd J X x
5 4 simprd J Top F -1 = x Clsd J X x
6 3 5 syl B Clsd J F -1 = x Clsd J X x
7 6 fveq1d B Clsd J F -1 B = x Clsd J X x B
8 1 cldopn B Clsd J X B J
9 difeq2 x = B X x = X B
10 eqid x Clsd J X x = x Clsd J X x
11 9 10 fvmptg B Clsd J X B J x Clsd J X x B = X B
12 8 11 mpdan B Clsd J x Clsd J X x B = X B
13 7 12 eqtrd B Clsd J F -1 B = X B