Step |
Hyp |
Ref |
Expression |
1 |
|
opnfbas.1 |
|
2 |
|
ssrab2 |
|
3 |
1
|
eqimss2i |
|
4 |
|
sspwuni |
|
5 |
3 4
|
mpbir |
|
6 |
2 5
|
sstri |
|
7 |
6
|
a1i |
|
8 |
1
|
topopn |
|
9 |
8
|
anim1i |
|
10 |
9
|
3adant3 |
|
11 |
|
sseq2 |
|
12 |
11
|
elrab |
|
13 |
10 12
|
sylibr |
|
14 |
13
|
ne0d |
|
15 |
|
ss0 |
|
16 |
15
|
necon3ai |
|
17 |
16
|
3ad2ant3 |
|
18 |
17
|
intnand |
|
19 |
|
df-nel |
|
20 |
|
sseq2 |
|
21 |
20
|
elrab |
|
22 |
21
|
notbii |
|
23 |
19 22
|
bitr2i |
|
24 |
18 23
|
sylib |
|
25 |
|
sseq2 |
|
26 |
25
|
elrab |
|
27 |
|
sseq2 |
|
28 |
27
|
elrab |
|
29 |
26 28
|
anbi12i |
|
30 |
|
simpl |
|
31 |
|
simprll |
|
32 |
|
simprrl |
|
33 |
|
inopn |
|
34 |
30 31 32 33
|
syl3anc |
|
35 |
|
ssin |
|
36 |
35
|
biimpi |
|
37 |
36
|
ad2ant2l |
|
38 |
37
|
adantl |
|
39 |
34 38
|
jca |
|
40 |
39
|
3ad2antl1 |
|
41 |
|
sseq2 |
|
42 |
41
|
elrab |
|
43 |
40 42
|
sylibr |
|
44 |
|
ssid |
|
45 |
|
sseq1 |
|
46 |
45
|
rspcev |
|
47 |
43 44 46
|
sylancl |
|
48 |
47
|
ex |
|
49 |
29 48
|
syl5bi |
|
50 |
49
|
ralrimivv |
|
51 |
14 24 50
|
3jca |
|
52 |
|
isfbas2 |
|
53 |
8 52
|
syl |
|
54 |
53
|
3ad2ant1 |
|
55 |
7 51 54
|
mpbir2and |
|