Metamath Proof Explorer


Theorem opnfbas

Description: The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Mario Carneiro, 7-Aug-2015)

Ref Expression
Hypothesis opnfbas.1 X = J
Assertion opnfbas J Top S X S x J | S x fBas X

Proof

Step Hyp Ref Expression
1 opnfbas.1 X = J
2 ssrab2 x J | S x J
3 1 eqimss2i J X
4 sspwuni J 𝒫 X J X
5 3 4 mpbir J 𝒫 X
6 2 5 sstri x J | S x 𝒫 X
7 6 a1i J Top S X S x J | S x 𝒫 X
8 1 topopn J Top X J
9 8 anim1i J Top S X X J S X
10 9 3adant3 J Top S X S X J S X
11 sseq2 x = X S x S X
12 11 elrab X x J | S x X J S X
13 10 12 sylibr J Top S X S X x J | S x
14 13 ne0d J Top S X S x J | S x
15 ss0 S S =
16 15 necon3ai S ¬ S
17 16 3ad2ant3 J Top S X S ¬ S
18 17 intnand J Top S X S ¬ J S
19 df-nel x J | S x ¬ x J | S x
20 sseq2 x = S x S
21 20 elrab x J | S x J S
22 21 notbii ¬ x J | S x ¬ J S
23 19 22 bitr2i ¬ J S x J | S x
24 18 23 sylib J Top S X S x J | S x
25 sseq2 x = r S x S r
26 25 elrab r x J | S x r J S r
27 sseq2 x = s S x S s
28 27 elrab s x J | S x s J S s
29 26 28 anbi12i r x J | S x s x J | S x r J S r s J S s
30 simpl J Top r J S r s J S s J Top
31 simprll J Top r J S r s J S s r J
32 simprrl J Top r J S r s J S s s J
33 inopn J Top r J s J r s J
34 30 31 32 33 syl3anc J Top r J S r s J S s r s J
35 ssin S r S s S r s
36 35 biimpi S r S s S r s
37 36 ad2ant2l r J S r s J S s S r s
38 37 adantl J Top r J S r s J S s S r s
39 34 38 jca J Top r J S r s J S s r s J S r s
40 39 3ad2antl1 J Top S X S r J S r s J S s r s J S r s
41 sseq2 x = r s S x S r s
42 41 elrab r s x J | S x r s J S r s
43 40 42 sylibr J Top S X S r J S r s J S s r s x J | S x
44 ssid r s r s
45 sseq1 t = r s t r s r s r s
46 45 rspcev r s x J | S x r s r s t x J | S x t r s
47 43 44 46 sylancl J Top S X S r J S r s J S s t x J | S x t r s
48 47 ex J Top S X S r J S r s J S s t x J | S x t r s
49 29 48 syl5bi J Top S X S r x J | S x s x J | S x t x J | S x t r s
50 49 ralrimivv J Top S X S r x J | S x s x J | S x t x J | S x t r s
51 14 24 50 3jca J Top S X S x J | S x x J | S x r x J | S x s x J | S x t x J | S x t r s
52 isfbas2 X J x J | S x fBas X x J | S x 𝒫 X x J | S x x J | S x r x J | S x s x J | S x t x J | S x t r s
53 8 52 syl J Top x J | S x fBas X x J | S x 𝒫 X x J | S x x J | S x r x J | S x s x J | S x t x J | S x t r s
54 53 3ad2ant1 J Top S X S x J | S x fBas X x J | S x 𝒫 X x J | S x x J | S x r x J | S x s x J | S x t x J | S x t r s
55 7 51 54 mpbir2and J Top S X S x J | S x fBas X