Metamath Proof Explorer


Theorem opnlen0

Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd and op0le to see if this is useful elsewhere. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses op0le.b B = Base K
op0le.l ˙ = K
op0le.z 0 ˙ = 0. K
Assertion opnlen0 K OP X B Y B ¬ X ˙ Y X 0 ˙

Proof

Step Hyp Ref Expression
1 op0le.b B = Base K
2 op0le.l ˙ = K
3 op0le.z 0 ˙ = 0. K
4 1 2 3 op0le K OP Y B 0 ˙ ˙ Y
5 4 3adant2 K OP X B Y B 0 ˙ ˙ Y
6 breq1 X = 0 ˙ X ˙ Y 0 ˙ ˙ Y
7 5 6 syl5ibrcom K OP X B Y B X = 0 ˙ X ˙ Y
8 7 necon3bd K OP X B Y B ¬ X ˙ Y X 0 ˙
9 8 imp K OP X B Y B ¬ X ˙ Y X 0 ˙