Metamath Proof Explorer


Theorem opnmbl

Description: All open sets are measurable. This proof, via dyadmbl and uniioombl , shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Assertion opnmbl A topGen ran . A dom vol

Proof

Step Hyp Ref Expression
1 oveq1 x = z x 2 y = z 2 y
2 oveq1 x = z x + 1 = z + 1
3 2 oveq1d x = z x + 1 2 y = z + 1 2 y
4 1 3 opeq12d x = z x 2 y x + 1 2 y = z 2 y z + 1 2 y
5 oveq2 y = w 2 y = 2 w
6 5 oveq2d y = w z 2 y = z 2 w
7 5 oveq2d y = w z + 1 2 y = z + 1 2 w
8 6 7 opeq12d y = w z 2 y z + 1 2 y = z 2 w z + 1 2 w
9 4 8 cbvmpov x , y 0 x 2 y x + 1 2 y = z , w 0 z 2 w z + 1 2 w
10 9 opnmbllem A topGen ran . A dom vol