Metamath Proof Explorer


Theorem opnmblALT

Description: All open sets are measurable. This alternative proof of opnmbl is significantly shorter, at the expense of invoking countable choice ax-cc . (This was also the original proof before the current opnmbl was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion opnmblALT A topGen ran . A dom vol

Proof

Step Hyp Ref Expression
1 qtopbas . × TopBases
2 eltg3 . × TopBases A topGen . × x x . × A = x
3 1 2 ax-mp A topGen . × x x . × A = x
4 uniiun x = y x y
5 ssdomg . × TopBases x . × x . ×
6 1 5 ax-mp x . × x . ×
7 omelon ω On
8 qnnen
9 xpen × ×
10 8 8 9 mp2an × ×
11 xpnnen ×
12 10 11 entri ×
13 nnenom ω
14 12 13 entr2i ω ×
15 isnumi ω On ω × × dom card
16 7 14 15 mp2an × dom card
17 ioof . : * × * 𝒫
18 ffun . : * × * 𝒫 Fun .
19 17 18 ax-mp Fun .
20 qssre
21 ressxr *
22 20 21 sstri *
23 xpss12 * * × * × *
24 22 22 23 mp2an × * × *
25 17 fdmi dom . = * × *
26 24 25 sseqtrri × dom .
27 fores Fun . × dom . . × : × onto . ×
28 19 26 27 mp2an . × : × onto . ×
29 fodomnum × dom card . × : × onto . × . × ×
30 16 28 29 mp2 . × ×
31 domentr . × × × . ×
32 30 12 31 mp2an . ×
33 domtr x . × . × x
34 6 32 33 sylancl x . × x
35 imassrn . × ran .
36 ffn . : * × * 𝒫 . Fn * × *
37 17 36 ax-mp . Fn * × *
38 ioombl x y dom vol
39 38 rgen2w x * y * x y dom vol
40 ffnov . : * × * dom vol . Fn * × * x * y * x y dom vol
41 37 39 40 mpbir2an . : * × * dom vol
42 frn . : * × * dom vol ran . dom vol
43 41 42 ax-mp ran . dom vol
44 35 43 sstri . × dom vol
45 sstr x . × . × dom vol x dom vol
46 44 45 mpan2 x . × x dom vol
47 dfss3 x dom vol y x y dom vol
48 46 47 sylib x . × y x y dom vol
49 iunmbl2 x y x y dom vol y x y dom vol
50 34 48 49 syl2anc x . × y x y dom vol
51 4 50 eqeltrid x . × x dom vol
52 eleq1 A = x A dom vol x dom vol
53 51 52 syl5ibrcom x . × A = x A dom vol
54 53 imp x . × A = x A dom vol
55 54 exlimiv x x . × A = x A dom vol
56 3 55 sylbi A topGen . × A dom vol
57 eqid topGen . × = topGen . ×
58 57 tgqioo topGen ran . = topGen . ×
59 56 58 eleq2s A topGen ran . A dom vol