Metamath Proof Explorer


Theorem opnmbllem

Description: Lemma for opnmbl . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
Assertion opnmbllem A topGen ran . A dom vol

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
2 fveq2 z = w . z = . w
3 2 sseq1d z = w . z A . w A
4 3 elrab w z ran F | . z A w ran F . w A
5 simprr A topGen ran . w ran F . w A . w A
6 fvex . w V
7 6 elpw . w 𝒫 A . w A
8 5 7 sylibr A topGen ran . w ran F . w A . w 𝒫 A
9 4 8 sylan2b A topGen ran . w z ran F | . z A . w 𝒫 A
10 9 ralrimiva A topGen ran . w z ran F | . z A . w 𝒫 A
11 iccf . : * × * 𝒫 *
12 ffun . : * × * 𝒫 * Fun .
13 11 12 ax-mp Fun .
14 ssrab2 z ran F | . z A ran F
15 1 dyadf F : × 0 2
16 frn F : × 0 2 ran F 2
17 15 16 ax-mp ran F 2
18 inss2 2 2
19 rexpssxrxp 2 * × *
20 18 19 sstri 2 * × *
21 17 20 sstri ran F * × *
22 14 21 sstri z ran F | . z A * × *
23 11 fdmi dom . = * × *
24 22 23 sseqtrri z ran F | . z A dom .
25 funimass4 Fun . z ran F | . z A dom . . z ran F | . z A 𝒫 A w z ran F | . z A . w 𝒫 A
26 13 24 25 mp2an . z ran F | . z A 𝒫 A w z ran F | . z A . w 𝒫 A
27 10 26 sylibr A topGen ran . . z ran F | . z A 𝒫 A
28 sspwuni . z ran F | . z A 𝒫 A . z ran F | . z A A
29 27 28 sylib A topGen ran . . z ran F | . z A A
30 eqid abs 2 = abs 2
31 30 rexmet abs 2 ∞Met
32 eqid MetOpen abs 2 = MetOpen abs 2
33 30 32 tgioo topGen ran . = MetOpen abs 2
34 33 mopni2 abs 2 ∞Met A topGen ran . w A r + w ball abs 2 r A
35 31 34 mp3an1 A topGen ran . w A r + w ball abs 2 r A
36 elssuni A topGen ran . A topGen ran .
37 uniretop = topGen ran .
38 36 37 sseqtrrdi A topGen ran . A
39 38 sselda A topGen ran . w A w
40 rpre r + r
41 30 bl2ioo w r w ball abs 2 r = w r w + r
42 39 40 41 syl2an A topGen ran . w A r + w ball abs 2 r = w r w + r
43 42 sseq1d A topGen ran . w A r + w ball abs 2 r A w r w + r A
44 2re 2
45 1lt2 1 < 2
46 expnlbnd r + 2 1 < 2 n 1 2 n < r
47 44 45 46 mp3an23 r + n 1 2 n < r
48 47 ad2antrl A topGen ran . w A r + w r w + r A n 1 2 n < r
49 39 ad2antrr A topGen ran . w A r + w r w + r A n 1 2 n < r w
50 2nn 2
51 nnnn0 n n 0
52 51 ad2antrl A topGen ran . w A r + w r w + r A n 1 2 n < r n 0
53 nnexpcl 2 n 0 2 n
54 50 52 53 sylancr A topGen ran . w A r + w r w + r A n 1 2 n < r 2 n
55 54 nnred A topGen ran . w A r + w r w + r A n 1 2 n < r 2 n
56 49 55 remulcld A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n
57 fllelt w 2 n w 2 n w 2 n w 2 n < w 2 n + 1
58 56 57 syl A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n w 2 n w 2 n < w 2 n + 1
59 58 simpld A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n w 2 n
60 reflcl w 2 n w 2 n
61 56 60 syl A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n
62 54 nngt0d A topGen ran . w A r + w r w + r A n 1 2 n < r 0 < 2 n
63 ledivmul2 w 2 n w 2 n 0 < 2 n w 2 n 2 n w w 2 n w 2 n
64 61 49 55 62 63 syl112anc A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n w w 2 n w 2 n
65 59 64 mpbird A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n w
66 peano2re w 2 n w 2 n + 1
67 61 66 syl A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n + 1
68 67 54 nndivred A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n + 1 2 n
69 58 simprd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n < w 2 n + 1
70 ltmuldiv w w 2 n + 1 2 n 0 < 2 n w 2 n < w 2 n + 1 w < w 2 n + 1 2 n
71 49 67 55 62 70 syl112anc A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n < w 2 n + 1 w < w 2 n + 1 2 n
72 69 71 mpbid A topGen ran . w A r + w r w + r A n 1 2 n < r w < w 2 n + 1 2 n
73 49 68 72 ltled A topGen ran . w A r + w r w + r A n 1 2 n < r w w 2 n + 1 2 n
74 61 54 nndivred A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n
75 elicc2 w 2 n 2 n w 2 n + 1 2 n w w 2 n 2 n w 2 n + 1 2 n w w 2 n 2 n w w w 2 n + 1 2 n
76 74 68 75 syl2anc A topGen ran . w A r + w r w + r A n 1 2 n < r w w 2 n 2 n w 2 n + 1 2 n w w 2 n 2 n w w w 2 n + 1 2 n
77 49 65 73 76 mpbir3and A topGen ran . w A r + w r w + r A n 1 2 n < r w w 2 n 2 n w 2 n + 1 2 n
78 56 flcld A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n
79 1 dyadval w 2 n n 0 w 2 n F n = w 2 n 2 n w 2 n + 1 2 n
80 78 52 79 syl2anc A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n F n = w 2 n 2 n w 2 n + 1 2 n
81 80 fveq2d A topGen ran . w A r + w r w + r A n 1 2 n < r . w 2 n F n = . w 2 n 2 n w 2 n + 1 2 n
82 df-ov w 2 n 2 n w 2 n + 1 2 n = . w 2 n 2 n w 2 n + 1 2 n
83 81 82 eqtr4di A topGen ran . w A r + w r w + r A n 1 2 n < r . w 2 n F n = w 2 n 2 n w 2 n + 1 2 n
84 77 83 eleqtrrd A topGen ran . w A r + w r w + r A n 1 2 n < r w . w 2 n F n
85 fveq2 z = w 2 n F n . z = . w 2 n F n
86 85 sseq1d z = w 2 n F n . z A . w 2 n F n A
87 ffn F : × 0 2 F Fn × 0
88 15 87 ax-mp F Fn × 0
89 fnovrn F Fn × 0 w 2 n n 0 w 2 n F n ran F
90 88 78 52 89 mp3an2i A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n F n ran F
91 simplrl A topGen ran . w A r + w r w + r A n 1 2 n < r r +
92 91 rpred A topGen ran . w A r + w r w + r A n 1 2 n < r r
93 49 92 resubcld A topGen ran . w A r + w r w + r A n 1 2 n < r w r
94 93 rexrd A topGen ran . w A r + w r w + r A n 1 2 n < r w r *
95 49 92 readdcld A topGen ran . w A r + w r w + r A n 1 2 n < r w + r
96 95 rexrd A topGen ran . w A r + w r w + r A n 1 2 n < r w + r *
97 74 92 readdcld A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n + r
98 61 recnd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n
99 1cnd A topGen ran . w A r + w r w + r A n 1 2 n < r 1
100 55 recnd A topGen ran . w A r + w r w + r A n 1 2 n < r 2 n
101 54 nnne0d A topGen ran . w A r + w r w + r A n 1 2 n < r 2 n 0
102 98 99 100 101 divdird A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n + 1 2 n = w 2 n 2 n + 1 2 n
103 54 nnrecred A topGen ran . w A r + w r w + r A n 1 2 n < r 1 2 n
104 simprr A topGen ran . w A r + w r w + r A n 1 2 n < r 1 2 n < r
105 103 92 74 104 ltadd2dd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n + 1 2 n < w 2 n 2 n + r
106 102 105 eqbrtrd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n + 1 2 n < w 2 n 2 n + r
107 49 68 97 72 106 lttrd A topGen ran . w A r + w r w + r A n 1 2 n < r w < w 2 n 2 n + r
108 49 92 74 ltsubaddd A topGen ran . w A r + w r w + r A n 1 2 n < r w r < w 2 n 2 n w < w 2 n 2 n + r
109 107 108 mpbird A topGen ran . w A r + w r w + r A n 1 2 n < r w r < w 2 n 2 n
110 49 103 readdcld A topGen ran . w A r + w r w + r A n 1 2 n < r w + 1 2 n
111 74 49 103 65 leadd1dd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n + 1 2 n w + 1 2 n
112 102 111 eqbrtrd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n + 1 2 n w + 1 2 n
113 103 92 49 104 ltadd2dd A topGen ran . w A r + w r w + r A n 1 2 n < r w + 1 2 n < w + r
114 68 110 95 112 113 lelttrd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n + 1 2 n < w + r
115 iccssioo w r * w + r * w r < w 2 n 2 n w 2 n + 1 2 n < w + r w 2 n 2 n w 2 n + 1 2 n w r w + r
116 94 96 109 114 115 syl22anc A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n 2 n w 2 n + 1 2 n w r w + r
117 83 116 eqsstrd A topGen ran . w A r + w r w + r A n 1 2 n < r . w 2 n F n w r w + r
118 simplrr A topGen ran . w A r + w r w + r A n 1 2 n < r w r w + r A
119 117 118 sstrd A topGen ran . w A r + w r w + r A n 1 2 n < r . w 2 n F n A
120 86 90 119 elrabd A topGen ran . w A r + w r w + r A n 1 2 n < r w 2 n F n z ran F | . z A
121 funfvima2 Fun . z ran F | . z A dom . w 2 n F n z ran F | . z A . w 2 n F n . z ran F | . z A
122 13 24 121 mp2an w 2 n F n z ran F | . z A . w 2 n F n . z ran F | . z A
123 120 122 syl A topGen ran . w A r + w r w + r A n 1 2 n < r . w 2 n F n . z ran F | . z A
124 elunii w . w 2 n F n . w 2 n F n . z ran F | . z A w . z ran F | . z A
125 84 123 124 syl2anc A topGen ran . w A r + w r w + r A n 1 2 n < r w . z ran F | . z A
126 48 125 rexlimddv A topGen ran . w A r + w r w + r A w . z ran F | . z A
127 126 expr A topGen ran . w A r + w r w + r A w . z ran F | . z A
128 43 127 sylbid A topGen ran . w A r + w ball abs 2 r A w . z ran F | . z A
129 128 rexlimdva A topGen ran . w A r + w ball abs 2 r A w . z ran F | . z A
130 35 129 mpd A topGen ran . w A w . z ran F | . z A
131 29 130 eqelssd A topGen ran . . z ran F | . z A = A
132 fveq2 c = a . c = . a
133 132 sseq1d c = a . c . b . a . b
134 equequ1 c = a c = b a = b
135 133 134 imbi12d c = a . c . b c = b . a . b a = b
136 135 ralbidv c = a b z ran F | . z A . c . b c = b b z ran F | . z A . a . b a = b
137 136 cbvrabv c z ran F | . z A | b z ran F | . z A . c . b c = b = a z ran F | . z A | b z ran F | . z A . a . b a = b
138 14 a1i A topGen ran . z ran F | . z A ran F
139 1 137 138 dyadmbl A topGen ran . . z ran F | . z A dom vol
140 131 139 eqeltrrd A topGen ran . A dom vol