Metamath Proof Explorer


Theorem opnnei

Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009)

Ref Expression
Assertion opnnei J Top S J x S S nei J x

Proof

Step Hyp Ref Expression
1 0opn J Top J
2 1 adantr J Top S = J
3 eleq1 S = S J J
4 3 adantl J Top S = S J J
5 2 4 mpbird J Top S = S J
6 rzal S = x S S nei J x
7 6 adantl J Top S = x S S nei J x
8 5 7 2thd J Top S = S J x S S nei J x
9 opnneip J Top S J x S S nei J x
10 9 3expia J Top S J x S S nei J x
11 10 ralrimiv J Top S J x S S nei J x
12 11 ex J Top S J x S S nei J x
13 12 adantr J Top ¬ S = S J x S S nei J x
14 df-ne S ¬ S =
15 r19.2z S x S S nei J x x S S nei J x
16 15 ex S x S S nei J x x S S nei J x
17 14 16 sylbir ¬ S = x S S nei J x x S S nei J x
18 eqid J = J
19 18 neii1 J Top S nei J x S J
20 19 ex J Top S nei J x S J
21 20 rexlimdvw J Top x S S nei J x S J
22 17 21 sylan9r J Top ¬ S = x S S nei J x S J
23 18 ntrss2 J Top S J int J S S
24 23 adantr J Top S J x S x int J S int J S S
25 vex x V
26 25 snss x int J S x int J S
27 26 ralbii x S x int J S x S x int J S
28 dfss3 S int J S x S x int J S
29 28 biimpri x S x int J S S int J S
30 29 adantl J Top S J x S x int J S S int J S
31 27 30 sylan2br J Top S J x S x int J S S int J S
32 24 31 eqssd J Top S J x S x int J S int J S = S
33 32 ex J Top S J x S x int J S int J S = S
34 25 snss x S x S
35 sstr2 x S S J x J
36 35 com12 S J x S x J
37 36 adantl J Top S J x S x J
38 34 37 syl5bi J Top S J x S x J
39 38 imp J Top S J x S x J
40 18 neiint J Top x J S J S nei J x x int J S
41 40 3com23 J Top S J x J S nei J x x int J S
42 41 3expa J Top S J x J S nei J x x int J S
43 39 42 syldan J Top S J x S S nei J x x int J S
44 43 ralbidva J Top S J x S S nei J x x S x int J S
45 18 isopn3 J Top S J S J int J S = S
46 33 44 45 3imtr4d J Top S J x S S nei J x S J
47 46 ex J Top S J x S S nei J x S J
48 47 com23 J Top x S S nei J x S J S J
49 48 adantr J Top ¬ S = x S S nei J x S J S J
50 22 49 mpdd J Top ¬ S = x S S nei J x S J
51 13 50 impbid J Top ¬ S = S J x S S nei J x
52 8 51 pm2.61dan J Top S J x S S nei J x