Database
BASIC TOPOLOGY
Topology
Neighborhoods
opnneip
Next ⟩
opnnei
Metamath Proof Explorer
Ascii
Unicode
Theorem
opnneip
Description:
An open set is a neighborhood of any of its members.
(Contributed by
NM
, 8-Mar-2007)
Ref
Expression
Assertion
opnneip
⊢
J
∈
Top
∧
N
∈
J
∧
P
∈
N
→
N
∈
nei
⁡
J
⁡
P
Proof
Step
Hyp
Ref
Expression
1
snssi
⊢
P
∈
N
→
P
⊆
N
2
opnneiss
⊢
J
∈
Top
∧
N
∈
J
∧
P
⊆
N
→
N
∈
nei
⁡
J
⁡
P
3
1
2
syl3an3
⊢
J
∈
Top
∧
N
∈
J
∧
P
∈
N
→
N
∈
nei
⁡
J
⁡
P