Metamath Proof Explorer


Theorem opnoncon

Description: Law of contradiction for orthoposets. ( chocin analog.) (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opnoncon.b B = Base K
opnoncon.o ˙ = oc K
opnoncon.m ˙ = meet K
opnoncon.z 0 ˙ = 0. K
Assertion opnoncon K OP X B X ˙ ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 opnoncon.b B = Base K
2 opnoncon.o ˙ = oc K
3 opnoncon.m ˙ = meet K
4 opnoncon.z 0 ˙ = 0. K
5 eqid K = K
6 eqid join K = join K
7 eqid 1. K = 1. K
8 1 5 2 6 3 4 7 oposlem K OP X B X B ˙ X B ˙ ˙ X = X X K X ˙ X K ˙ X X join K ˙ X = 1. K X ˙ ˙ X = 0 ˙
9 8 3anidm23 K OP X B ˙ X B ˙ ˙ X = X X K X ˙ X K ˙ X X join K ˙ X = 1. K X ˙ ˙ X = 0 ˙
10 9 simp3d K OP X B X ˙ ˙ X = 0 ˙