Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|
2 |
|
elssuni |
|
3 |
|
uniretop |
|
4 |
2 3
|
sseqtrrdi |
|
5 |
|
ssdomg |
|
6 |
1 4 5
|
mpsyl |
|
7 |
|
rpnnen |
|
8 |
|
domentr |
|
9 |
6 7 8
|
sylancl |
|
10 |
|
n0 |
|
11 |
4
|
sselda |
|
12 |
|
rpnnen2 |
|
13 |
|
rphalfcl |
|
14 |
13
|
rpred |
|
15 |
|
resubcl |
|
16 |
14 15
|
sylan2 |
|
17 |
|
readdcl |
|
18 |
14 17
|
sylan2 |
|
19 |
|
simpl |
|
20 |
|
ltsubrp |
|
21 |
13 20
|
sylan2 |
|
22 |
|
ltaddrp |
|
23 |
13 22
|
sylan2 |
|
24 |
16 19 18 21 23
|
lttrd |
|
25 |
|
iccen |
|
26 |
16 18 24 25
|
syl3anc |
|
27 |
|
domentr |
|
28 |
12 26 27
|
sylancr |
|
29 |
|
ovex |
|
30 |
|
rpre |
|
31 |
|
resubcl |
|
32 |
30 31
|
sylan2 |
|
33 |
32
|
rexrd |
|
34 |
|
readdcl |
|
35 |
30 34
|
sylan2 |
|
36 |
35
|
rexrd |
|
37 |
19
|
recnd |
|
38 |
14
|
adantl |
|
39 |
38
|
recnd |
|
40 |
37 39 39
|
subsub4d |
|
41 |
30
|
adantl |
|
42 |
41
|
recnd |
|
43 |
42
|
2halvesd |
|
44 |
43
|
oveq2d |
|
45 |
40 44
|
eqtrd |
|
46 |
13
|
adantl |
|
47 |
16 46
|
ltsubrpd |
|
48 |
45 47
|
eqbrtrrd |
|
49 |
18 46
|
ltaddrpd |
|
50 |
37 39 39
|
addassd |
|
51 |
43
|
oveq2d |
|
52 |
50 51
|
eqtrd |
|
53 |
49 52
|
breqtrd |
|
54 |
|
iccssioo |
|
55 |
33 36 48 53 54
|
syl22anc |
|
56 |
|
ssdomg |
|
57 |
29 55 56
|
mpsyl |
|
58 |
|
domtr |
|
59 |
28 57 58
|
syl2anc |
|
60 |
|
eqid |
|
61 |
60
|
bl2ioo |
|
62 |
30 61
|
sylan2 |
|
63 |
59 62
|
breqtrrd |
|
64 |
11 63
|
sylan |
|
65 |
|
simplll |
|
66 |
|
simpr |
|
67 |
|
ssdomg |
|
68 |
65 66 67
|
sylc |
|
69 |
|
domtr |
|
70 |
64 68 69
|
syl2an2r |
|
71 |
|
eqid |
|
72 |
60 71
|
tgioo |
|
73 |
72
|
eleq2i |
|
74 |
60
|
rexmet |
|
75 |
71
|
mopni2 |
|
76 |
74 75
|
mp3an1 |
|
77 |
73 76
|
sylanb |
|
78 |
70 77
|
r19.29a |
|
79 |
78
|
ex |
|
80 |
79
|
exlimdv |
|
81 |
10 80
|
syl5bi |
|
82 |
81
|
imp |
|
83 |
|
sbth |
|
84 |
9 82 83
|
syl2an2r |
|