Metamath Proof Explorer


Theorem opnssneib

Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007)

Ref Expression
Hypothesis neips.1 X = J
Assertion opnssneib J Top S J N X S N N nei J S

Proof

Step Hyp Ref Expression
1 neips.1 X = J
2 simplr S J N X S N N X
3 sseq2 g = S S g S S
4 sseq1 g = S g N S N
5 3 4 anbi12d g = S S g g N S S S N
6 ssid S S
7 6 biantrur S N S S S N
8 5 7 bitr4di g = S S g g N S N
9 8 rspcev S J S N g J S g g N
10 9 adantlr S J N X S N g J S g g N
11 2 10 jca S J N X S N N X g J S g g N
12 11 ex S J N X S N N X g J S g g N
13 12 3adant1 J Top S J N X S N N X g J S g g N
14 1 eltopss J Top S J S X
15 1 isnei J Top S X N nei J S N X g J S g g N
16 14 15 syldan J Top S J N nei J S N X g J S g g N
17 16 3adant3 J Top S J N X N nei J S N X g J S g g N
18 13 17 sylibrd J Top S J N X S N N nei J S
19 ssnei J Top N nei J S S N
20 19 ex J Top N nei J S S N
21 20 3ad2ant1 J Top S J N X N nei J S S N
22 18 21 impbid J Top S J N X S N N nei J S