Metamath Proof Explorer
Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
opth1.1 |
|
|
|
opth1.2 |
|
|
Assertion |
opnzi |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opth1.1 |
|
| 2 |
|
opth1.2 |
|
| 3 |
|
opnz |
|
| 4 |
1 2 3
|
mpbir2an |
|