Metamath Proof Explorer


Theorem opoe

Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion opoe A ¬ 2 A B ¬ 2 B 2 A + B

Proof

Step Hyp Ref Expression
1 odd2np1 A ¬ 2 A a 2 a + 1 = A
2 odd2np1 B ¬ 2 B b 2 b + 1 = B
3 1 2 bi2anan9 A B ¬ 2 A ¬ 2 B a 2 a + 1 = A b 2 b + 1 = B
4 reeanv a b 2 a + 1 = A 2 b + 1 = B a 2 a + 1 = A b 2 b + 1 = B
5 2z 2
6 zaddcl a b a + b
7 6 peano2zd a b a + b + 1
8 dvdsmul1 2 a + b + 1 2 2 a + b + 1
9 5 7 8 sylancr a b 2 2 a + b + 1
10 zcn a a
11 zcn b b
12 addcl a b a + b
13 2cn 2
14 ax-1cn 1
15 adddi 2 a + b 1 2 a + b + 1 = 2 a + b + 2 1
16 13 14 15 mp3an13 a + b 2 a + b + 1 = 2 a + b + 2 1
17 12 16 syl a b 2 a + b + 1 = 2 a + b + 2 1
18 adddi 2 a b 2 a + b = 2 a + 2 b
19 13 18 mp3an1 a b 2 a + b = 2 a + 2 b
20 19 oveq1d a b 2 a + b + 2 1 = 2 a + 2 b + 2 1
21 17 20 eqtrd a b 2 a + b + 1 = 2 a + 2 b + 2 1
22 2t1e2 2 1 = 2
23 df-2 2 = 1 + 1
24 22 23 eqtri 2 1 = 1 + 1
25 24 oveq2i 2 a + 2 b + 2 1 = 2 a + 2 b + 1 + 1
26 21 25 eqtrdi a b 2 a + b + 1 = 2 a + 2 b + 1 + 1
27 mulcl 2 a 2 a
28 13 27 mpan a 2 a
29 mulcl 2 b 2 b
30 13 29 mpan b 2 b
31 add4 2 a 2 b 1 1 2 a + 2 b + 1 + 1 = 2 a + 1 + 2 b + 1
32 14 14 31 mpanr12 2 a 2 b 2 a + 2 b + 1 + 1 = 2 a + 1 + 2 b + 1
33 28 30 32 syl2an a b 2 a + 2 b + 1 + 1 = 2 a + 1 + 2 b + 1
34 26 33 eqtrd a b 2 a + b + 1 = 2 a + 1 + 2 b + 1
35 10 11 34 syl2an a b 2 a + b + 1 = 2 a + 1 + 2 b + 1
36 9 35 breqtrd a b 2 2 a + 1 + 2 b + 1
37 oveq12 2 a + 1 = A 2 b + 1 = B 2 a + 1 + 2 b + 1 = A + B
38 37 breq2d 2 a + 1 = A 2 b + 1 = B 2 2 a + 1 + 2 b + 1 2 A + B
39 36 38 syl5ibcom a b 2 a + 1 = A 2 b + 1 = B 2 A + B
40 39 rexlimivv a b 2 a + 1 = A 2 b + 1 = B 2 A + B
41 4 40 sylbir a 2 a + 1 = A b 2 b + 1 = B 2 A + B
42 3 41 syl6bi A B ¬ 2 A ¬ 2 B 2 A + B
43 42 imp A B ¬ 2 A ¬ 2 B 2 A + B
44 43 an4s A ¬ 2 A B ¬ 2 B 2 A + B