Metamath Proof Explorer


Theorem oppccat

Description: An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis oppcbas.1 O = oppCat C
Assertion oppccat C Cat O Cat

Proof

Step Hyp Ref Expression
1 oppcbas.1 O = oppCat C
2 1 oppccatid C Cat O Cat Id O = Id C
3 2 simpld C Cat O Cat