Database
BASIC CATEGORY THEORY
Categories
Opposite category
oppcco
Next ⟩
oppcbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppcco
Description:
Composition in the opposite category.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
oppcco.b
⊢
B
=
Base
C
oppcco.c
⊢
·
˙
=
comp
⁡
C
oppcco.o
⊢
O
=
oppCat
⁡
C
oppcco.x
⊢
φ
→
X
∈
B
oppcco.y
⊢
φ
→
Y
∈
B
oppcco.z
⊢
φ
→
Z
∈
B
Assertion
oppcco
⊢
φ
→
G
X
Y
comp
⁡
O
Z
F
=
F
Z
Y
·
˙
X
G
Proof
Step
Hyp
Ref
Expression
1
oppcco.b
⊢
B
=
Base
C
2
oppcco.c
⊢
·
˙
=
comp
⁡
C
3
oppcco.o
⊢
O
=
oppCat
⁡
C
4
oppcco.x
⊢
φ
→
X
∈
B
5
oppcco.y
⊢
φ
→
Y
∈
B
6
oppcco.z
⊢
φ
→
Z
∈
B
7
1
2
3
4
5
6
oppccofval
⊢
φ
→
X
Y
comp
⁡
O
Z
=
tpos
Z
Y
·
˙
X
8
7
oveqd
⊢
φ
→
G
X
Y
comp
⁡
O
Z
F
=
G
tpos
Z
Y
·
˙
X
F
9
ovtpos
⊢
G
tpos
Z
Y
·
˙
X
F
=
F
Z
Y
·
˙
X
G
10
8
9
eqtrdi
⊢
φ
→
G
X
Y
comp
⁡
O
Z
F
=
F
Z
Y
·
˙
X
G