Metamath Proof Explorer


Theorem oppcco

Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses oppcco.b B = Base C
oppcco.c · ˙ = comp C
oppcco.o O = oppCat C
oppcco.x φ X B
oppcco.y φ Y B
oppcco.z φ Z B
Assertion oppcco φ G X Y comp O Z F = F Z Y · ˙ X G

Proof

Step Hyp Ref Expression
1 oppcco.b B = Base C
2 oppcco.c · ˙ = comp C
3 oppcco.o O = oppCat C
4 oppcco.x φ X B
5 oppcco.y φ Y B
6 oppcco.z φ Z B
7 1 2 3 4 5 6 oppccofval φ X Y comp O Z = tpos Z Y · ˙ X
8 7 oveqd φ G X Y comp O Z F = G tpos Z Y · ˙ X F
9 ovtpos G tpos Z Y · ˙ X F = F Z Y · ˙ X G
10 8 9 eqtrdi φ G X Y comp O Z F = F Z Y · ˙ X G