Metamath Proof Explorer


Theorem oppchom

Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses oppchom.h H = Hom C
oppchom.o O = oppCat C
Assertion oppchom X Hom O Y = Y H X

Proof

Step Hyp Ref Expression
1 oppchom.h H = Hom C
2 oppchom.o O = oppCat C
3 1 2 oppchomfval tpos H = Hom O
4 3 oveqi X tpos H Y = X Hom O Y
5 ovtpos X tpos H Y = Y H X
6 4 5 eqtr3i X Hom O Y = Y H X